Efficient and facile delivery of gold nanoparticles in vivo using dissolvable microneedles for contrast-enhanced optical coherence tomography

نویسندگان

  • Chang Soo Kim
  • Yeh-Chan Ahn
  • Petra Wilder-Smith
  • Seajin Oh
  • Zhongping Chen
  • Young Jik Kwon
چکیده

Obtaining sufficient contrast is an indispensable requirement for detecting early stage cancer using optical coherence tomography (OCT), an emerging diagnostic tool that detects abnormal lesions with micrometer resolutions in real time. PEGylated gold nanoparticles (Au NPs; 87 nm in diameter) were formulated in aqueous dissolvable microneedles (dMNs; 200 μm height) for efficient, precisely controlled, and convenient delivery of Au NPs into hamster oral tissue in vivo. The Au NPs were then further briefly dissipated by ultrasound (US). The results showed 33% and 20% increase in average optical scattering intensity (contrast level) in dysplastic and normal tissues, respectively, and pinpointed pathological structures of early stage oral cancer were also identified by the highly convenient and efficient administration of Au NPs in a novel delivery platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles.

Contrast in optical coherence tomography (OCT) images can be enhanced by utilizing surface plasmon resonant gold nanoparticles. To improve the poor in vivo transport of gold nanoparticles through biological barriers, an efficient delivery strategy is needed. In this study, the improved penetration and distribution of gold nanoparticles were achieved by microneedle and ultrasound, respectively, ...

متن کامل

In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography.

Current imaging techniques capable of tracking nanoparticles in vivo supply either a large field of view or cellular resolution, but not both. Here, we demonstrate a multimodality imaging platform of optical coherence tomography (OCT) techniques for high resolution, wide field of view in vivo imaging of nanoparticles. This platform includes the first in vivo images of nanoparticle pharmacokinet...

متن کامل

Applications of gold nanoparticles for medical imaging

Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...

متن کامل

Evaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging

Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...

متن کامل

Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry

Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010